|
- VGGT: Visual Geometry Grounded Transformer - GitHub
Visual Geometry Grounded Transformer (VGGT, CVPR 2025) is a feed-forward neural network that directly infers all key 3D attributes of a scene, including extrinsic and intrinsic camera parameters, point maps, depth maps, and 3D point tracks, from one, a few, or hundreds of its views, within seconds
- [2503. 11651] VGGT: Visual Geometry Grounded Transformer - arXiv. org
We present VGGT, a feed-forward neural network that directly infers all key 3D attributes of a scene, including camera parameters, point maps, depth maps, and 3D point tracks, from one, a few, or hundreds of its views
- VGGT:视觉几何基础大模型 - 知乎 - 知乎专栏
vggt 直接输出相机位姿估计,而 vggt + ba 通过额外的束调整阶段优化估计。 我们与经典的增量 SfM 方法(如 [66, 94])和最近提出的深度方法进行比较。 具体而言,最近 VGGSfM [125] 提供了首个端到端训练的深度方法,在具有挑战性的摄影旅游数据集上超越了增量 SfM。
- CVPR 2025|VGGT|基于视觉几何的 Transformer 网络 - CSDN博客
本文精读的论文 “VGGT:Visual Geometry Grounded Transformer” 提出了一种前馈神经网络 VGGT;能够从单个、几个或数百个视图中直接推断场景的所有关键 3D 属性,包括相机参数、点地图、深度图和 3D 点轨迹。 VGGT 还具有简单高效的特点,可在一秒内完成图像重建,并且仍然优于需要通过视觉几何优化技术进行后处理的其他方法。 该网络在多个 3D 任务中取得了先进的结果,包括相机参数估计、多视图深度估计、密集点云重建和 3D 点跟踪。 我们还表明,使用预训练的 VGGT 作为特征主干可以显著增强下游任务的性能,例如非刚性点跟踪和前馈新视图合成。 图1 VGGT是一个大型前馈Transformer,具有最小的3D感应偏差,在大量3D注释数据上进行训练。
- VGGT: Visual Geometry Grounded Transformer - CVF Open Access
Architecture As mentioned in the main paper, VGGT consists of 24 attention blocks, each block equipped with one frame-wise self-attention layer and one global self-attention layer Following the ViT-L model used in DI-NOv2 [37], each attention layer is configured with a feature dimension of 1024 and employs 16 heads We use the of-
- VGGT: Visual Geometry Grounded Transformer
We propose Visual Geometry Grounded Transformer (VGGT), a feed-forward neural network that directly predicts all key 3D scene attributes from single or multiple (up to hundreds) image views within seconds
- facebook VGGT-1B - Hugging Face
Visual Geometry Grounded Transformer (VGGT, CVPR 2025) is a feed-forward neural network that directly infers all key 3D attributes of a scene, including extrinsic and intrinsic camera parameters, point maps, depth maps, and 3D point tracks, from one, a few, or hundreds of its views, within seconds
- 论文学习及实验笔记之——《VGGT: Visual Geometry Grounded Transformer》
VGGT是一个 large feed-forward transformer,通过输入高达数百张图片,一次(少于1秒)预测出所有图片的三维属性(相机的内参与外参,point map,深度图,3D点跟踪),并且在这些3D task的任务中都取得非常优异的性能,并且进一步的把这个预训练的VGGT用到下游任务(如
|
|
|